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We consider the stability of the motion generated in a differentially heated 
vertical slot filled with a linearly stratified salt solution. The theoretical mean 
motion field between infinite plates is a function of the Rayleigh number 
R, = g/?( as&) D4/ksv. If R, is zero the salinity does not enter the problem 
and one finds instability in the form of stationary rolls which obtain most of 
their energy from the basic velocity field. Even at very small R, of order - 1000 
these shear instabilities are replaced by diffusively destabilized convective rolls 
which appear at a thermal Rayleigh number R, = gaATD3/k,v which is two 
orders of magnitude less than that required for the shear generated modes. 
The present calculations, which take proper account of both the mean fields 
and the boundary conditions, give results which compare somewhat more 
favourably with the experimental results of Thorpe, Hutt & Soulsby (1969) 
than the theory put forward by these authors. It is shown why their theory, 
which deals with different boundary conditions from those in the experiment, 
gives adequate results as R, tends to negative infinity. 

1. Introduction 
There has been considerable interest lately, especially amongst geophysical 

fluid dynamicists, in flows which can become convectively unstable as a result 
of differential diffusion. This occurs when the generally stabilizing effect of one 
component is reduced by diffusion allowing a release of potential energy of an 
unstable component. Thermohaline convection in the presence of vertical 
temperature and salinity gradients between horizontal plates is a well-known 
example of this phenomena (for examples see Stern 1960, or Baines 8: Gill 1969). 
In  this type of convective instability the cells are rectangular? and the motion 
results from diffusion away from vertically displaced parcels. Blumsack (1967) 
and Thorpe, Hutt & Soulsby (1969), hereafter THS, considered a different type 
of instability which occurs in the presence of both vertical and horizontal 
gradients of heat and salt. In these situations the cells are tilted and the motion 
results from diffision away from parcels displaced sideways, or perhaps more 
correctly, along sloping surfaces. Both Blumsack and THS give simple physical 
explanations of the instability. This instability is not restrioted to situations in 
which both diffusive components affect the density, nor do the components 

t This is to say that the theoretical eigenfunction can be written as f(z, t )  eikz where f 
ip, real. 
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need to be heat and salt, so long as the two diffusivities are unequal. McIntyre 
(1970) has shown how angular momentum and temperature can act as the agents 
to diffusively destabilize a circular baroclinic vortex. 

There is some experimental evidence for this type of sideways diffusive 
instability. THS observe the onset and subsequent development of rolls in a 
vertical channel, heated from the sides, containing a linearly stratified salt 
solution. D. J. Baker (private communication) has observed layers in a rotating 
stratified fluid which may be due to McIntyre’s related mechanism. However, 
there has been no theory put forward which satisfies all the experimental 
constraints. This paper presents an attempt to construct such a theory for the 
thermohaline case. The linearized stability problem is formulated in $ 2 .  Section 
3 contains an asymptotic solution which shows the relation between this work 
and the theory of THS. The numerical calculation of the complete neutral 
stability curve is outlined in $ 4  and the results are compared with the available 
experimental data in 8 5. 

2. Formulation 
We consider the experimental setup in figure 1. The fluid is initially linearly 

stratified and the superimposed velocity-temperature-salinity fields are set up 
by imposing a quasi-statically increasing temperature difference across the 
plates at  x* = ? QD. These are assumed to be rigid, perfectly conducting to 
heat, and perfectly insulating to salt. The wall at z* = - QL is a rigid insulator, 
that at &L a free insulator. We suppose that LID is sufficiently large that for 
measurements conducted near the centre of the apparatus the assumption of a 
steady parallel mean flow with a8,lax equal to  its initial value will be valid. 
This assumption will be clarified later. Within the Boussinesq approximation 
the full non-dimensional equations are 

(2.1) 

R,dTl&t = V2T, (2.2) 
(2.3) 

R, du -_ - - -Vp+Vzu+(T-S)^z,  V . U  = 0,  P, at 

HR, &&/at i- R,w = V 2 8 .  
The non-dimensional parameters are the thermal Rayleigh number 

R, = guATD3/K,v 
the salinity Rayleigh number R, = g/?( a8,laz) D*/K,v, the Prandtl number 
P, = K ~ / V  and the Schmidt number H = K ~ / K ~  Velocities have been scaled by 
gaATD2/v, lengths by D, temperature by AT, and salinity by aAT//?. In the 
above definitions g is the gravitational acceleration, a the coefficient of thermal 
expansion, /3 the coefficient of volumetric expa.nsion, K~ the diffusitivity of 
temperature, K~ the diffusivity of salt, and v the kinematic viscosity. 

With the infinite channel assumption we must satisfy boundary conditions 

T =  k4, (2.4) 

s, = 0, (2.5) 
and v = w = u = O  at x =  k+. (2.6) 
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The steady parallel flow equations are exactly linear: 

w,, + To - so = 0, 
To, = 0, 

Sox, - R,w~ = 0. 

-30 

i 
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FIGURE 1. Geometry for the problem. The box initially contains a linearly 
stratified salt solution. 

The solution of these equations is 
To = X, (2.10) 

(2.11) 
(2.12) 

8, = 5 - [cosh Nx cos Nx( 1 + A )  + sinh Mx sin Mx(A - l ) ] /B ,  

A = tan &M/tanh Q!f, 

B = sin +M/sinh 4M + cash &M/COS 4H. 

and 
where 
and 

Thus the solution depends on the single parameter 

Wo = [cosh Mx sin Mx- A sinh Mx cos Mx]/2M3B, 

N = ( -  ,tR,)4 (2.13) 

Yigure 2 shows how the profiles change as M increases. There is always a motion 
field although this becomes small as M becomes large, The non-dimensional 
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horizontal density gradient (given by So*- 1) is also a function of M ,  and 
becomes zero except in narrow wall regions of width M-1 as M becomes large. 
These changes reflect the stabilizing effect of the vertical salinity gradient. 

To examine the stability of (2.10)-(2.11) we write perturbed variables pro- 
portional to exp [ikz + wt] and linearize equations (2.1)-(2.3). We thus assume 

0 0 1  0-2 0.3 0.4 
-0.001 

.2: X 

FIGURE 2. The basic fields as 8 function of M = ( - fR$. (a )  The velocity, antisymmetric 
about x = 0, and ( b )  the horizontal salinity gradient, symmetric about x: = 0. 

two-dimensional transverse ro1ls.t With d = d / d x ,  w = $z, and u = -$2, the 
perturbation equations are: 

-~ Raw (d2 - k2) $ + (d2- kz)21,4 - ik 3 [W, ( d2 - k2)  $- $d2W,] + dT - dS = 0,  
p, P, 

(2.14) 

(2.15) - R,wT + ( d2 - k2) T -I- ikRa$ - ikRa WoT = 0,  
- HR,wS + (a2 - k2)  S + ikHR, dS,$ - ilcHR,WoS - R, d$ = 0, (2.16) 

which must be solved subject to 

$ = d @ = T = d d S = O  at x =  -1-8. (2.17) 

t Under certain conditions these can be shown to be the most unstable (THS, appendix 
B) but for the general mean fields considered here a Squires theorem cannot be proved. 

1 
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3. Asymptotic solution for large - R, 
The solution presented by THS is a solution of (2.14)-(2.16) in which 

0 = 0, wo = 0, So, = 1, 

and only the boundary condition on $ is satisfied. The prediction of their 
model gave results for large - R, which were quite consistent with experiment. 
In  this section we show that the leading order asymptotic solution of the full 
problem for large - R, gives their result and c o f i m s  their hypothesis about the 
effect of mean flow and boundary conditions in this limit. 

We consider the solution for w = 0, R8+ -a, H 2 O(l) ,  and P, 2 O(1). In 
this limit l4$ 0 and So, = 1 except in boundary layers of thickness - R;a. 
Thus we expect the solution to contain both interior and boundary components, 
but as yet we do not know what scales to use for the critical values R, and k. 
We assume the consistent solution will have kR, H - - R,and k % 1, assumptions 
which are justified u posteriori. Essentially by trial and error one can find that 
the proper expansion parameter is - R;i. However, rather than proceed with 
a formal analysis we take a more heuristic approach to obtain the leading order 
solution. Near the walls normal derivatives will dominate tangential derivatives 
( -  k) and boundary-layer equations can be written as 

d4$+dT-dS = ikRaP~1[W,d2$-$d2Wo] +O(d2k2$),  (3.1) 
d2T +ikRa$ = ikWoR,T + O(k2T),  (3 .2)  

and d2S-R8d$ = -ikHR,dSo$+ikHR,WoS+O(k2S). (3.3) 

Note dS, 5 1 and Wo 5 O( - R;P) so that the general boundary-layer solution of 
(3.1)-(3.3) is 4 

$,, = 2 u~er~x+O(a,k2/IR816), (3.4) 
i=l 

where the a, are constants and the r, are the four roots (&R8)f. Since we are 
considering only the physically realistic case with R, < 0 boundary-layer 
solutions exist. The thickness of these layers is the same as those in the basic flow. 

k4$ + dT - dS = O(d2k2$-), (3-5) 

(d2-k')T+ikRa$ = 0, (3.6) 
and (d'-k')S+ikHR,$-R,d$ = 0. (3 .7 )  

@, = a5 er6" + a6er6x + O(u5ri/k2), (3.8) 

Ti = (iR,/k) (a5e+6x+a,ersx)+a7ek5+age-kx, (3.9) 

In  the interior the equations become 

The solutions are 

and S, = k-'(ikHR, - R8d) (u5erKx + a,e*2) + a7ekz  + a8e-ks, (3.10) 
ikR, (H- l )  1 

& - ( - k2R2,(H - 1)'- 4R,k6)4. 
2RS 2% where r6,6 = - (3.11) 

The eigenvalue equation is obtained by applying the eight boundary conditions 
(2.17).  The resulting set of linear algebraic equations can be satisfied to order 
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2Mlk-l provided the condition 9 = 0 at x = 4 is satisfied exactly by the interior 
solution. This is a reflection of the ability of the wall layers to dominate the 
differentiated boundary conditions d$ = dS = 0. Using (3.8) and (3.11) this 
gives 

(3.12) 

where n must be an integer. 
The most unstable mode occurs for n = 1 and 

k = 1.30( -R,)*, (3.13) 

whence R,(H - 1) = 5.90( - R,)i. (3.14) 

The error factor for the above expressions is O(Rii%). Conditions (3.13) and 
(3.14) are exactly those obtained by THS,’(- although their higher-order eigen- 
value corrections and the eigenfunctions will not agree with the results of this 
analysis. Since the rolls are much wider than they are tall the effects of the walls 
and of the non-zero velocity and horizontal density gradient fields enter as a 
higher-order correction to the basic interior balance between vertical diffusion 
and advection. Thus one can see why the ‘free-boundary’ solution of THS 
which retains the correct interior balance seems to work. 

It is relatively straightforward to include non-zero w in the above calculation, 
although the final eigenvalue equation corresponding to (3.12) has to be solved 
numerically. One finds that the instability is monotonic (wi = 0 )  and that 
dimensional e-folding times (under the experimental conditions of THS) on the 
order of 5 min are obtained at Rayleigh numbers 5 yo supercritical, increasing 
as - R, increases. 

The above asymptotic theory predicts transition points in reasonable agree- 
ment with the experimental data provided - R, > 3 x lo6. Below this value 
one expects the boundaries and mean flow to play an important part in deter- 
mining the neutral curve. The next sections describe the numerical solution of 
the complete stability problem. 

4. Numerical calculations 
Equations (2.14)-(2.17) are solved numerically using the Galerkin method 

(Mikhlin 1964). We expand $, T and S in complete sets of functions satisfying 
the boundary conditions (2.17). We write 

N 

N 

(4.3) 

t Note that their parameters are defined differently from ours. In  the present context 
the correspondence is that their R, = R,(H - l)/+ and R, = RJ+. 
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The co-ordinate functions are given by orthogonal solutions of 

i 
/ 
/ 
/ 
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d2Qd + A; &i = 0 

and a4q -/& = 0, 

with real eigenvalues A, and pi. The expansions are substituted into (2.14)-(2.17). 
The resulting equations are operated on by 

respectively, thus converting the original set of differential equations into a 
matrix eigenvalue problem. By using suitable transformations based on the odd 

Unstable 
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Figures 3 and 4 show the numerical results. The crosses indicate points a t  
which the complete matrix eigenvalue problem was solved for o. The solid lines 
are constructed from some thirty points. In  the crossed cases wi - 0 to within the 
accuracy of the subroutine used to find it. There is a marked transition between 
two rbgimes. From previous work (Birikh et al. 1968, Hart 1971) we know that 
the instability at  R, = 0 is a shear instability, the perturbations obtaining most 

I 1 I I I I I 
1(0) 10 1 o2 103 1 04 105 1 06 1 07 

- R* 
FIGURE 4. Wave-numbers for neutral stability. P, = 6.7, H = 101. 

The dashed line represents the asymptotic result (3.13). 

of their energy from the basic velocity field at the centre of the slot. The structure 
of the neutral curve suggests that the flow is unstable to this type of instability 
until R,N -1000 where the sideways diffusive mechanism takes over. It is 
interesting that this double diffusive mechanism is so strong. The sideways 
temperature difference needed to destabilize a weak vertical salinity gradient 
is very small indeed (with water and a 1 cm gap R, = 250 is attained with 
AT = 0.017OC). This very low value partially explains why it has proved 
difficult to maintain a vertical salinity gradient in the laboratory without 
‘accidentally ’ forming layers, although many laboratory situations correspond 
to the more difficult LID N 1 (time-dependent) stability problem. At  these 
intermediate R, the interior horizontal salinity gradient is sufficiently non-zero 
to destabilize the flow. It is not yet equal to 1 for all x, and this fact, coupled 
with the damping at the walls, yields a neutral curve above that of the previous 
section. As - R, increases the damping effect of the stable vertical stratification 
increases so that k and R, become larger, ultimately going as - R! and - R! 
respectively. 
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5. Comparison with experiment and conclusions 
Figure 5 shows the detailed comparison between the theory and the measure- 

ments taken from figures 9 and 10 of THS. There is an error in the published 
scale of the abscissa of figure 9, confirmed by S. Thorpe (private communication), 
which should give - R, ten times the values indicated. We see that the complete 
theory gives more favourable agreement with the data than does the approximate 

103 I I 1 

- R, 
105 1 06 107 

b 

10 
9 
8 

I *  L L I 
105 106 107 

- R8 
FIGURE 5. Comparison with the experimental results of THS. Solid lines represent the 

complete (numerical) theory, dashed lines the asymptotic results. 

theory, especially for lower - R, where the latter is less valid. Note that the 
' first-order correction ' of THS predicts a similar behaviour but this is regarded 
as fortuitous since as seen in 3 3 corrections to the leading order asymptotic theory 
must involve the boundary conditions which they have treated incorrectly. 
There is still a significant discrepancy but this may well be due t o  the difficulty 
in observing the onset of inhitesimal disturbances, a fact which was reflected 
in the cell structure which did not appear to have the symmetric form etkc 
required by linear theory. Theoretically the neutral curves Ra(k) at large - R, 
tend to have I a2R,/ak2/ 4 1 where aRa/ak = 0, so that at slightly supercritical 
conditions a wide band of wave-numbers can be excited. 

For - R, > 6 x lo6 the points seem to be lower than the theoretical limit. 
If this is significant it suggests we look at the validity of the basic flow model. 
Aside from the parallel flow assumption, the other assumptions made in 
deriving (2.10)-(2.12) were: (i) To (also Wo and 8,) are independent of time; 
(ii) Soz(x, z, t )  = Soz(z, 0,O); (iii) To, = 0 away from the end regions z = L/2D. 
In  the absence of quantititative basic flow measurements or a complete theory 
we can only speculate as to the validity of these assumptions. Since the mean 
flow will tend to mix up the initial salinity gradient (ii) puts an upper limit on 
the time one can run an experiment, and hence the quasi-static assumption (i) 



288 J .  E .  Hart 

can never be satisfied exactly. This limit, estimated as the time for particle 
advection from one end to the centre of the box is 

7 LII Klma,.  PATC,,tD2/V, 
whhh is of order 10 h for - R, > lo6. We expect both assumptions (if and (ii) 
will be valid for experiments run on this time ecale. In  the case of (iii) we expect 
that To,, if non-zero, would be positive and hence would raise the effective - R, 
and increase the discrepancy between theory and experiment. Another possi- 
bility is the non-Boussinesq behaviour of the fluid at the high temperature 
differences ( N 10' C) needed in these experimental cases. 

In  summary, we have shown that the complete stability theory for the flow 
in a differentially heated vertical channel filled with a linearly stratified salt 
solution yields critical Rayleigh and wave-numbers which are in somewhat 
better agreement with the available data than the predictions of the previous 
theories, which do not deal with the mean flow or boundary conditions applicable 
to the experiment. The present results support the interpretation that the 
observed motions arise from diffusive destabilization. 

This research was carried out while the author was visiting the Department 
of Applied Mathematics and Theoretical Physics, Cambridge University, on a 
N.A.T.O. fellowship. The author would like to thank Dr S. A. Thorpe for his 
interest and helpful comments on this problem. 
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